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1. Introduction
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(Posamentier and Walker, 2006) (He et al., 2014

4 Submarine CaNYON (Shepard, 1981; Pratson et al., 2007)

» Major morphological features that develop along the continental slope in most continental margin around the world

» The primary conduits for the transport of clastic detritus from the continental shelf into the deep sea

» Repeated erosion and deposition associated with geological and geophycal conditions

» Studies on the origin and sedimentary processes of submarine canyons (Twichell and Roberts, 1982; Farre et al., 1983;
Pratson and Coakley, 1996; Straub and Mohrig, 2009; Jobe et al., 2011; lacono et al., 2014; Almeida et al., 2015)



1. Introduction
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¢ Type of submarine canyon

(Twichell and Roberts, 1982; Farre et al., 1983; Pratson and
Coakley, 1996; Pratson et al., 2007, lacono et al., 2014)

(1) Shelf-indenting canyon

» Occurrence from continental shelf to continental slope

» Transport of sandy sediments through gravity flows, and
connection with fluvial systems during sea-level lowstand

» Gentle slope, long length, and meandering center axis

» Development on the high sediment supply and/or active margin

(2) Slope-confined canyon

» Development limited to continental slope

» Formed by retrogressive slope failure

» Steep slope, short length, and straight center axis
» Studies on the low sediment supply area
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¢ Previous studies e f\ T

» Paleo-submarine canyons (Park et al., 2015) Small-scale I i

» Submarine failures and related mass transport deposit (MTD) gullies _::h i “‘h B e

(Lee et al., 1991; Lee et al., 1996; Chough et al., 1997; Lee and Suk, e— B C-— St e

1998, Lee et al., 1999; Lee et al., 2014; Cukur et al., 2016) RS deposits
129°50°E 130°00" 13010

4 Limitation

» Studies on the modern sedimentary processes

(Lee et al., 2014)

» Lack of relation between submarine canyons and MTD sedimentation %
» Seismic stratigraphy study around the canyon g
» Lack of geometric analysis of submarine canyon o
=
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¢ Purpose of this study 3
» Seismic characteristics and distribution pattern %
» Revealing the stratigraphy and depositional history of the canyon
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2. Geological setting

¢ Ulleung Basin (crougn, 2000)

» Marginal sea
» Three deep basin (Japan, Yamato, and Ulleung)
» Submarine highland (Korea Plateau, Yamato

ridge, and Oki bank)

¢ Western margin (voon and chough,
1995; Chough, 2000; Yoon et al., 2014)

» Bathymetry deepening E-W direction

» Abrupt change of submarine topography
: Narrow continental shelf (<20 km)

: Steep continental slope (4-10 ° )

: Deep sea

(Yoon and Chough, 1995) “Y" » Steep slope of middle-lower slope

< J‘”»“’E - i : Failure scar and gravity flow deposits
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» Sediment supply
: Namdae, Wangpyeong, Song river
: Absence of major fluvial systems
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» Geological structures
: Hupo fault elongated N-S direction (~ 140 km)
: Hopo bank (length : ~ 80 km, width :1-20 km)
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3. Data and method

4 Data
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4. Results

¢ Characteristics of submarine topograph

» Failure scar

: Occurrence at upper slope of 600 m depth
: Height of 60 — 88 m

: Max. Slope of 15 °

» Transversal profile

: U (a-d) to V (e-f) shape change

: Width of 2.5 — 7.7 km

: Increase in width toward slope

: Increase in depth toward basin

: Max. slope of 17 ° at the wall of canyon

» Longitudinal profile

: Concave-up
: Length of 14.7 km
Upper segment Middle segment Lower segment Abyssal plain
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4. Results A ==
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» Four seismic units separated by erosional unconformities . . .
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4. Results o el
¢ Seismic stratigraphy '_ T i

4000 |

» Unit 1 (Early to Late Miocene) e
: Overlying acoustic basement 2o
: Deepening toward east (~ 4.6 s) == |
: Subdue trough in the center o o
: Thickness of 0.16 — 0.36 s in slope ' \ =
: Depocenter of 0.8 s in basin —t ot
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4. Results

¢ Seismic stratigraphy

» Unit 2 (Late to late Late Miocene)

: Overlying unit 1

: Deepening toward east (~ 3.8 s)

: Trough in the center

: Width of 1.9 — 5.4 km

: Length of 17.5 km

: Max. height of 193.5 m

: Thickness of 0.13 — 0.20 s in slope

: Depocenter of 0.25 — 0.45 s in base of slope
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4. Results
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¢ Seismic stratigraphy |

» Unit 2 (Late to late Late Miocene) . . .
: Fan shape of deposit in the base of slope
: Two part of fan deposit bounded by reflection termination (onlap)
: Max. thickness of 0.36 s in the lower part
: Max. thickness of 0.23 s in the upper part
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4. Results o= [ s
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¢ Seismic stratigraphy e \ T

» Unit 3 (late Late Miocene to Pliocene)
: Overlying unit 2

: Deepening toward east (~ 3.6 s)

: Trough in the center

: Width of 2.0 — 5.1 km |
: Length of 16.4 km oo
: Max. height of 287.3 m '
: Thickness of 0.14 — 0.24 s in slope
: Depocenter of 0.47 s in basin
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4. Results

¢ Seismic stratigraphy

» Unit 4 (Quaternary)

: Overlying unit 3

: Deepening toward east (~ 3.2 s)

: Trough in the center

: Width of 2.3 — 4.4 km

: Length of 14.7 km

: Max. height of 228.7 m

: Thickness of 0.06 — 0.13 s in slope

: Depocenter of 0.20 — 0.27 s in basin
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¢ Seismic stratigraphy YR i
4 LA
» Unit 4 (Quaternary) S e e
: Three debris lobe in the base of slope 5 N

: Lenticular form characterized by transparent and chaotic
: Max. thickness of 17 m

: Area of 65 km?

: Volume of 0.5 km3
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(D)

¢ Geometry of submarine canyon

» From U to V shape
» Increase in width toward slope
» Increase in depth toward basin ©

Horizo Width Length Max. height Thalweg Change

n (km) (km) (m) path of shape n
Na

H2 1.9-54 17.5 193.5 straight u->Vv b
g
;

H3 2.0-5.1 16.5 287.3 straight Uu->V :

H4 2344 14.7 228.75 straight u->V

SF 2.5-7.7 14.7 360 straight u->Vv
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5. Discussion

¢ Development of submarine canyon (snepard, 1981)

» Long-live and erosional processes
(1) Turbidity current
(2) Slope failure by slumping and mass wasting

¢ Models for development of submarine canyon

(1) Top-down model
(2) Bottom-up model

Type (A) (B)

Headward erosion
by slope failure

Turbidity current @

~—
~.
0y

Shelf break ~
Shelf break

Mechanism Top-down process Bottom-up process
Submarine erosion Turbidity current Slope failure and associated mass wasting
Location of initiation Shlef and upper slope Lower to middle slope
Internal fill Relict sand deposit Mass wasting deposit or hemipelagic deposit
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5. Discussion

¢ Characteristics of submarine canyon in the study area

(1) Distribution pattern (A) Time structure map of H1 o0
: Limited occurrence at the slope
: Absence of major fluvial system (Chough, 2000)

(2) Geometric characteristics (Rise et al., 2014)
: U to V shape

: Increase in width toward slope .
: Increase in depth toward basin (B) Time structure map of H2 1soe
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(3) Seismic facies
: Transparent and chaotic indicating MTD

- Bottom-up model developed by slope failure
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¢ Control factors

(1) Tectonic movement (Ediger et al., 1993; Elliott et al., 2006; Mountjoy et
al., 2009; Dantec et al., 2010; Restrepo-Correa and Ojeda, 2010; Jobe et al.,
2011)

: Basement low formed by basin rifting (Unit 1)
: Fault activity induced by compressional tectonic (unit 2)

(2) Sea-level change (Hampton et al., 1996, Lee et al., 1996; Paull et al.,
1996, Rao et al., 2002)

: Failure by decrease of hydrostatic pressure in sediment

: Gas hydrate distribution

: Pockmark around headwall scarps

]

Ulleungdo

|

-I;“)A“. Ry il
j:. \\_; LJr\L I h{j’%ﬁ :  \'g @ BSR

| @ Strong amplitude above BSR

@ Enhanced reflections

. 30 L1
e === rd @ Acoustic blanking within turbidite | |
] ( % AT ¢ Acoustic blanking within MTD
- A~ rn Seismic chimney
pL1 e Gasseepage
4 14
b

50 km

| | |
130°E 131 132°E

Distribution map of seismic indicators of gas

hydrate an

d gas (Yoo et al., 2013)

(b)

37.08 i

Jrno{ -1em

/L]

ETHY

10 _km

I
1iTR B

Distribution

T T T T
Tt 1alie e faiad 1d%e4

of pockmarks concentrated in

upslope regions of headwall scarps (Cukur et

al., 2016)

18



5. Discussion

¢ Depositional history of submarine canyon

(1) Stage 1 (Early to Late Miocene)
: Basement low formed by tectonic movement

(2) Stage 2 (Late to late Late Miocene)
: Slope failures due to fault activities
: Deposition of submarine fan in the base of slope

(3) Stage 3 (late Late Miocene to Pliocene)
: Subdued activity of submarine canyon

(4) Stage 4 (Quaternary)
: Slope failures because of sea-level change
: Occurrence of stacked debris flow deposit in the base of slope

Width Length Max. height Thalweg Shape

Horizon
(km) (km) (m) path change
H2 1.9-54 17.5 193.5 straight U->V
H3 2.0-5.1 16.5 287.3 straight U->V .
AGE4>< x>< xx K X e xx xx xx xx xx xx X
H4 2.3-4.4 14.7 228.75 straight U->V LEGEND
[ 7]: acoustic basement ML : Fault
SF 2577 147 360 straight U —> V vt Ut D
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6. Conclusion

1. Slope-confined submarine canyons occurred in the continental slope of the study area.

2. Seismic stratigraphic analysis reveals that sedimentary sequences in the study area are separated by erosional
unconformities and consists of four seismic units. The timing of development of submarine canyon is correlated with

each seismic unit.

3. Based on seismic characteristics and distribution pattern, submarine canyon was mainly developed at stage 2 and 4,
when submarine fan deposition that show well-stratified and chaotic seismic facies occurred. Unit 2 is caused by the
slope instability due to fault activities, and unit 4 is mainly attributed by sea level fluctuations under conditions of

subdued structural movement.

4. The stratigraphy of the study area associated with the submarine canyons is controlled by sediment supply due to

slope failure, tectonic movement, and sea level change.
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